Модели атрибуции в Google Analytics

25 декабря, 2017

При анализе продвижения сайта и полученной прибыли от проведения рекламных кампаний очень важно проследить весь путь пользователя целиком – от момента захода на сайт до совершения им покупки. Это даст нам возможность понять, как в дальнейшем распределить бюджет между рекламными каналами, как эти каналы взаимодействуют между собой, какой из них самый эффективный и многое другое.

На практике такой путь может состоять из цепочки различных источников трафика. Например, посетитель сначала перешел на наш сайт по контекстной рекламе (Paid Search), просмотрел несколько страниц сайта и ушел. Позже перешел снова, но уже из органического поиска (Organic Search). А через несколько дней зашел на сайт через прямой источник (Direct), введя адрес в строке браузера, и сделал заказ.

Модели атрибуции Google Analytics

Пример пути пользователя при покупке

Таким образом, до совершения транзакции (конверсии) пользователь взаимодействовал с сайтом через три разных источника трафика:

  1. Контекстная реклама;
  2. Органический поиск;
  3. Прямой заход;

К какому же из них Google Analytics в своих отчетах припишет достигнутую цель? Для ответа на этот вопрос необходимо разобраться в таких понятиях как атрибуция и модель атрибуции. Атрибуция в веб-аналитике – это правило распределения ценности конверсии среди всех этапов взаимодействия в пути конверсии и присвоение определенного количества баллов (в %) для расчета ее эффективности.

Модель атрибуции - это набор правил, по которому вы решили определять ценность конверсии. В Google Analytics существует 7 различных моделей атрибуции:

Модели атрибуции Google Analytics

Модели атрибуции Google Analytics

  1. Последнее взаимодействие;
  2. По последнему непрямому клику;
  3. Последний клик в AdWords;
  4. Первое взаимодействие;
  5. Линейная;
  6. Временной спад;
  7. На основе позиции.

Последнее взаимодействие (последний клик)

Все 100% ценности конверсии присваивается последнему каналу в цепочке взаимодействий. В нашем примере это прямой канал.

Модели атрибуции Google Analytics

Модель атрибуции - Последнее взаимодействие

В Яндекс.Метрика есть аналогичная модель атрибуции, которая называется «Последний переход».

Плюс этой модели заключается в том, что можно со 100% уверенностью сказать какое посещение завершилось конверсией. Однако в этом есть и ее минус – она не учитывает предшествующие взаимодействия пользователя сайтом. Таким образом, по нашему примеру в отчетах Analytics мы не сможем понять, что пользователь осуществил свое первое касание через рекламу (а именно на нее мы потратили деньги и через нее пользователь познакомился с нашим предложением впервые), и также не сможем увидеть, что затем он осуществлял схожий поиск и снова наткнулся на нас, но только уже через органику. Всю ценность забрал последний источник!

Эту модель рекомендуется применять к тем проектам, аудитория которых готова купить сразу же и без дополнительного времени на размышления. Как правило, это товары или услуги с быстрым откликом – доставка еды, вызов такси, эвакуация авто, ремонт техники и т.д.

По последнему непрямому клику

Эта модель используется по умолчанию для всех отчетов Google Analytics, кроме отчетов по многоканальным последовательностям. Отличие от первой модели состоит в том, что в атрибуции «По последнему непрямому клику» игнорируются прямые посещения, а 100% ценности присваивается последнему каналу в цепочке взаимодействий. В нашем примере – это органический поиск.

Модели атрибуции Google Analytics

Модель атрибуции - По последнему непрямому клику

В Яндекс.Метрика есть аналогичная модель атрибуции, которая называется «Последний значимый переход», в которой все источники условно разделены на значимые и вторичные (незначимые). К незначимым как раз и относятся прямые заходы, внутренние переходы и переходы с сохраненных страниц.

Поскольку она является базовой в Analytics, ее следует применять при сравнении с другими моделями. Инструмент сравнения моделей доступен в разделе «Конверсии – Атрибуция». Подробнее об этом будет разобрано в следующих главах.

В этой модели минус заключается в том, что целенаправленно занижается ценность прямых взаимодействий.

Последний клик в AdWords

Все 100% ценности конверсии присваивается последнему по объявлению AdWords в цепочке взаимодействий. В нашем примере это вовсе не значит, что 100% пойдут на контекстную рекламу (канал Paid Search), поскольку параллельно Google AdWords вы можете вести кампании и других рекламных системах.

Такая модель используется, если у вас есть рекламная кампания в AdWords, и пользователи с ваших объявлений приходят на сайт для совершения транзакций. И Google, вводя такую модель в список стандартных моделей атрибуции Analytics, не думал о других рекламных сервисах, кроме своего.

Гуру веб-аналитики и евангелист Google Авинаш Кошик (Avinash Kaushik) в одной из своих статей назвал эту модель бесполезной. Поэтому придержемся его совета и перейдем к разбору следующей.

Первое взаимодействие

Все 100% ценности конверсии присваивается первому каналу в цепочке взаимодействий. В нашем примере – это контекстная реклама.

Модели атрибуции Google Analytics

Модель атрибуции - Первое взаимодействие

В Яндекс.Метрика есть аналогичная модель атрибуции, которая называется «Первый переход».

Эту модель рекомендуется использовать для достижения первоначальной осведомленности пользователей к выходу на рынок того или иного бренда/компании, а также пробуждению интереса к конкретному товару/услуги.

Линейная модель атрибуции

Всем каналам в последовательности конверсий присваивается одинаковая ценность. В нашем примере по 33%.

Модели атрибуции Google Analytics

Модель атрибуции - Линейная

Такая модель применяется, когда пользователь подвергается воздействию с различных каналов на протяжении всего цикла совершения конверсии и при подсчете эффективности важны все точки взаимодействия с потенциальным клиентом. Например, при анализе публикаций в блоге.

Временной спад (с учетом давности взаимодействий)

В основе этой модели лежит такое понятие, как экспоненциальный распад, а ценность цели нарастает ближе к последнему каналу. Термин пришел в Google Analytics из ядерной физики и дает исчерпывающее представление о сущности модели временного распада: чем ближе к конверсии находится точка взаимодействия, тем более ценной она считается. Остальные точки теряют ценность с увеличением временного интервала.

В рамках данной модели период полураспада по умолчанию составляет семь дней. Это значит, что взаимодействие, произошедшее за семь дней до конверсии, в два раза менее ценно, чем зарегистрированное в один день с ней, а за две недели – в четыре. Экспоненциальный распад происходит в течение всего периода ретроспективного анализа (по умолчанию он составляет 30 дней).

В нашем примере наиболее близкий к конверсии канал – это прямой заход. Он получает наибольшую ценность, затем органический поиск и самый маленький % с учетом давности взаимодействий имеет контекстная реклама.

Модели атрибуции Google Analytics

Модель атрибуции - Временной спад

Модель применима для анализа покупок, произошедших в результате рекламных акций, чтобы присваивать больше ценности взаимодействиям в дни их проведения. А те, что были выполнены неделей раньше, будут оценены гораздо ниже.

Однако некоторые маркетологи используют ее в своей работе чаще, чем классическую «По последнему непрямому клику», поскольку она применима практически во всех тематиках. Можно долго спорить о ценности одних переходов по сравнению с другими. Но здесь все довольно логично - чем дальше от момента конверсии стоит тот или иной канал, тем меньше ценности он должен получить. Ведь если предыдущие переходы на сайт были не менее эффективными, то почему они не привели к конверсии?

Один из плюсов модели «Временной спад» — это возможность указать продолжительность периода полураспада и сравнивать ее с другими базовыми моделями.

Модели атрибуции Google Analytics

Возможность задать период полураспада

На основе позиции

На основе позиции по 40% ценности присваивается первому и последнему взаимодействиям, а оставшиеся 20% поровну распределяются между остальными. Модель атрибуции «На основе позиции» является гибридом моделей «Первое взаимодействие» и «Последнее взаимодействие».

Модели атрибуции Google Analytics

Модель атрибуции - На основе позиции

Эта модель является наиболее близкой к реальной жизни и ее рекомендуется использовать, когда необходимо отследить все точки взаимодействия: как от знакомства и проявления первого интереса к вашему бренду, так и до последнего взаимодействия, которое привело к конверсии.

Все перечисленные модели – это стандартные модели Google Analytics. Однако пользователи имеют возможность создавать свои собственные модели атрибуции. Сделать это можно с помощью настройки «Модели атрибуции», которая находится на уровне представления в пользовательских инструментах и объектах.

Модели атрибуции Google Analytics

Модели атрибуции на уровне представления

На начальных этапах работы с Google Analytics я рекомендую досконально разобраться с 7 основными моделями атрибуций и отчетами по многоканальным последовательностям (рассмотрим в отдельной главе), и лишь затем переходить к созданию собственных.

Получайте бесплатные уроки и фишки

По контекстной, таргетированной рекламе и аналитике